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Guidance or Resonance Conditions for
Strips or Disks Embedded in Homogeneous

and Layered Media

LEVENT GUREL, STUDENT MEMBER, IEEE, AND WENG CHO CHEW, SENIOR MEMBER, IEEE

Abstract—We illustrate how the guidance or resonance conditions of

strips or disks embedded in layered media can be formulated easily rising a
new notation we developed. We show that once we know the reflection

operator of a reflecting medium, we can find the gaidance or resonance
condkions of this structure quite easily. We can also find the guidance or
resonance conditions when the reflecting medium is interacting with another

strip or disk. We illustrate this with the catcrdations of the guidance of a
microstrip tine with an infinite ground plane and with a finite ground plane.

Our results for the infinite ground plane case agree very well with previous

calculations on these problems, while the results for the finite ground plane

case are new.

I. INTRODUCTION

IN THIS PAPER, we discuss the formulation of the
resonance and guidance conditions for complicated mi-

crostrip structures using a notation we developed in the
preceding paper [1]. These resonance and guidance condi-
tions allow us to find the resonance frequencies of a
structure and the guided mode of a waveguiding structure,
respectively. Once we know the reflection operators associ-
ated with the structure, the resonance or guidance problem
is easily formulated. The derivations of the reflection oper-
ators are discussed in the previous paper. These reflection
operators together with the new notation have a physical
interpretation; hence, we will not lose touch with the
underlying physics even for complex problems.

The resonance problem has applications in microstrip
resonators and microstrip antennas. We have also applied
this formulation to find the resonance frequency of a
microstrip disk over an infinite ground plane. In this case,
our formulation is similar to that reported in [2] using
vector Fourier transform method. However, this formula-
tion can be easily applied to study resonances of more
complex structures in microwave integrated circuits.

The guidance problem has applications in microstrip
lines and guidance by multiconductor microstrip lines
which have applications in high-speed circuitry in com-
puter technology. In this paper, we provide numerical
results for a microstrip line over a finite ground plane. In
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Fig. 1. Microstrip transmission line with a finite ground plane.
(a) Shifted strip case. (b) Symmetric case.

other words, this is the two-conductor microstrip line case.
We also discuss the case of a microstrip line over an
infinite ground plane. Our results using this method agree
with those previously published [3], [4].

The microstrip line waveguide has a long history. Since
its appearance, before World War II, there has been con-
tinuous work on this waveguide. The early works were
quasi-TEM in nature and did not account for the frequency
dispersive effects in the waveguides [5]-[11]. The use of
this waveguide at higher frequencies called for a frequency
dispersive solution. Many methods have been used
[12]-[20], but the more popular approach has been the
spectral-domain approach (SDA) [21], introduced by Itoh
and Mittra [22].

Although a rnicrostrip line with a finite ground plane is
encountered in a number of applications, e.g., in antenna
feeds, there are surprisingly few publications on the sub-
ject in the vast microstrip literature. Some related prob-
lems are the microstrip slotline problem reported by
Jansen [23] and the work by Itoh on a microstrip line over
a slot line using the spectral-domain immittance approach
[24].

The geometry of a microstrip transmission line with a
finite ground plane is shown in Fig. 1. This problem differs
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from the conventional microstrip problem in that the
present geometry has a ground plane of width Wz rather
than being infinite. Both the upper strip (of width Wl) and
the finite ground plane are infinitely conducting, infinitely
thin, and infinitely long in the y direction. An isotropic
dielectric slab of thickness h, permittivity (1, and perme-
ability PI is between the top and the bottom strips. This
dielectric slab is of infinite extent. We choose a coordinate
system such that the geometry is translationally invariant
in the y direction. The goal is to find the propagation
constants of all of the modes which are propagating in the
y direction. The results we present at the end of this paper
are for the symmetric case, shown in Fig. l(b). However,
the formulation is given for the more general asymmetric
case, shown in Fig. l(a).

In the rnicrostrip line problem, we shall also discuss how
to narrow our search window for the roots of the equation
for the guidance condition by requiring the guided micro-
strip modes to be slower than the surface-wave mode
inherent in the dielectric-coated ground plane. By so doing,
we also avoid poles in the numerical computation of the
integrals involved. We have also studied the effect of the
use of subdomain basis functions in this problem and
explained the occurrence of the spurious modes.

II. GUIDANCE OR RESONANCE CONDITION

With the knowledge of the reflection operators defined
in [1], we can formulate the guidance or resonance prob-
lem quite easily. In [1], we have characterized the scatter-
ing of waves from a layered medium with embedded strips
by reflection operators. The illuminating source and the
subsurface structure can form a resonator in the case of a
disk or a waveguide in the case of a strip. In both cases, a
solution of Maxwell’s equations satisfying all the requisite
boundary conditions exists without any other external
driving field. Fig. 2 illustrates a strip or a disk at z = z’
and an arbitrary geometry which contains other strips
and/or disks possibly embedded in a layered medium at
z <0. The general expression for the field in region 1 is of
the form

El,(r) =F(r, ): (eix’’l’-l’l+ ei%’zz:Z: eix12=~):’31: ~.

(1)

We assume that the illuminating source is also a strip. The
above expression satisfies all boundary conditions except
on the illuminating strip. Hence, we require that

El, (r,, z=z’)

““: .!7: ei%Zz’) : @, : ~= O, r,G S1=F(<): (..7+e”

(2)

where S1 is the surface of the strip in region 1. Expanding

<(k,) = ff(k,).A (3)

and weighting (2) by f(r~) and integrating over the surface

A-Z
J1~(r=)

\’ x., ,? = *1
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——
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Fig. 2. Arbitrary geometry under a strip or a disk.

of the strip, we have

where

1499

Z=o

(4)

(4a)

In order for ~,(q) to be nontrivial, we require A to be
nontrivial. This implies the existence of a resonant mode
or a guided mode. Therefore, the guidance or the reso-.
nance condition becomes

det(~) = O. (5)

Another way of stating the guidance or the resonance
condition is that the reflection operator associated with the
structure is infinite. If we were to define a reflection
operator for the total structure above, we would discover
that (5) implies that the reflection operator for the struc-
ture is infinite.

A. Infinite Ground Plane Case

If the layered medium below the illuminating strip is a
substrate backed by an infinite ground plane, then ~ in
(5) is a diagonal operator. In particular,’ ~ is an operator
representation of the reflection matrix

R=
[
_p4 o

0 #E 1 (6)

where [25]

In (7), R~~ and R$~ are the Fresnel reflection coefficients
for the air-dielectric interface and h is the thickness of the
dielectric substrate. Then, ~ to be used in (5) in integral
form is

where ~“t(k,) and j~(k, ) are column vectors containing the
basis functions and testing functions, respectively. If we
have N basis functions and N testing functions, (5) is the
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determinant of a 2N x 2A7 matrix ~ whose submatrices
(which are 2x 2) are given by

Fmn=Jdksjm(k.) ”(i+E)”a,(k.) ”in(ks) (9)

where m=l,. ... N, and n=l,. ... N. In the guidance
problem, the left-hand side in (5) is a function of kY, the
wavenumber in the direction of propagation of a guided
mode. For a resonant problem, (5) is a function of Q, the
frequency of the wave.

B. Finite Ground Plane Case

The finite ground plane case, as shown in Fig. 1, consists
of an infinite dielectric slab backed by another finite strip
or disk, and these are placed right under the illuminating
strip. In order to formulate the guidance or the resonance
condition in this geometry, we need only to find the
appropriate expression for ~ in (42). Raising the upper
strip to z = z’ (from z = O) and lowering the finite ground
plane to z = – h – d (from z = – A), the incident and the
scattered fields in region 1 and region 3 can be written as

Eg(r) = F(r~) : (ei&lZ1’-”l+ e’xlZZ:S,, :e2&1=z’):91: J,

(lo)

E:(r) = F(r, ): e-i%’’(’+h) :E13 :e’fl”z’:@l :J, (11)

E;(r) =F(r,): (e z.%f,lz+h+dl + e–l~sz(z+fi)

)
: G32 : ei~”d : @3: ~, (12)

l?:(r) =F(r, ): e’%’” :;31 :eZ%3’d: f23: ~~ (13)

where Ez~(r) is the original field in region i due to the
illuminating strip in the absence of the subsurface strip in
region 3, and Ei~(r) is the field in region i due to the
induced current on the subsurface strip. In the above, Y13
is a transmission operator which propagates the field from
z = O in region 1 to z = —A. Following the approach given
in [1], we expand the induced current density .l~( r,) in
terms of fj(r,) A. We use vector Fourier transforms [26]
and require that E:(r) + E3~( r) be zero on the lower strip.
Letting z’ -+ O and ds O,we can solve for our A and find
that

A=–F3-1.j~,: ~~~ :~1 : ~. (14)

where

“ ):%:fi.F3= f;,: (3+$232 (15)

The reflection operator that we should use in (4a) can be
extracted from the expression for the total transverse elec-
tric field in region 1 as

.Z=612-;31: 33: f;. r;l. f;,: ;13. (16)

?Ij and ~~1 can be derived as shown in the appendix of

[1]. Consequently, the reflection operator can be written as

Z’=@12-Yzl: (j–~zq : $ZZl: e’2X2=h)-l

:e ‘“2’h : 9;2 : @3: f?

.T3-l. ~3t: Y23 : e’%’=h

:(&.Z21 : .Z2, : e’2%2,’)-1: <2. (17)

In the above derivation, @lz and .@3z are generalized
reflection operators due to the slab alone. Substituting (17)
into (5), we have

If we assume that medium 1 and medium 3 are identical,
then the above is of the form

where

and

(20a)

(20b)

Hence, all the ~ matrices in (20) are computable. In the—
above, the 17,matrix is responsible for the self-interaction
of the current on the strip in region i, whereas ~Zj is a
cross-interaction matrix responsible for the interaction of
the current on the strip in region i with the current on the
strip in region j. The ~, matrices can be made symmetrical
by a proper choice of the expansion functions and the
testing functions. The ~Zj matrix is asymmetrical.

III. COMPUTATIONAL NOTES

We have formulated the strip or the disk problem em-
bedded in a layered medium. The disk problem is useful in
microstrip resonators. In this case, we retain all the previ-

ous definitions. The strip problem is useful in waveguides.

For waveguiding structures, we can assume that the field

has e’k~y dependence, where y is the direction of propa-

gation. In the strip case, the integral Jdk, becomes J dkX
and l/4n 2 becomes l/2m.

In the disk case, the testing function ~m(r$) is defined to
be

[

{Xm(r.) o~m(r,) = o 1J&(rs) “
(21)

[n this case, the matrix ~ is symmetric. ~ is of the general
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form

r= ~(k.):~: fl(&) (22)

where ~ is a diagonal operator. For the strip case, in order
to obtain a symmetric ~, we can define

[

Jxm( r. ) o
~m(r~) = o 1–Jyrn(q) “

(23)

Symmetric ~ matrices save computation time in the filling
of the matrices.

A. A4icrostrip Transmission Line with an Infinite
Ground Plane

For the microstrip transmission line with an infinite
ground plane, the matrix ~ is given by

~=~w dkX~(kX) .( f+~). ~l(kX). ~(kX). (24)
—w

In solving for kY in the guidance problem for a microstrip
line with an infinite ground plane, we need to find k, that
makes the determinant of ~ go to zero. A natural window
of search for kY is

k=ufi<kY<afi=kl. (25)

However, for some values of kY in this window together
with some values of kX, the dyadic Green’s function,
(~+ ~). ~l(kx), becomes singular, thus rendering the in-
tegral of (24) difficult to compute if”we integrate on the
real axis. This happens if either

1 + R;’fe%h = 0 (26a)

or

1 – R~~ei2k’h= O. (26b)

Equations (26a) and (26b) are recognized as the guidance
conditions for TM and TE modes, respectively, propagat-
ing in the dielectric-coated ground plane. These modes are
the surface-wave modes in the dielectric-coated ground
plane. They can propagate in any direction in the xy
plane. Since we are looking at a guided mode on the
microstrip line, the guided mode should not leak energy
into the surface-wave modes. Otherwise, the surface-wave
modes will carry energy away from the microstrip line.
When that happens, the microstrip line modes are cut off.
In order for the microstrip mode to be trapped in the
microstrip line entirely, we require the surface-wave mode
to be evanescent away from the rnicrostrip line. In other
words, we require the microstrip line modes to be slower
than the surface-wave mode. If the surface-wave mode has
a wavenumber transverse to z which is kP, then we require
that kY for the microstrip mode be larger than kP._

Furthermore, when kY > kP, the poles of the (1+ ~).
~1( kX) are all on the imaginary kX axis on the complex kX
plane. This ensures the convergence of the numerical com-
putation of the integral in (24) on the real kX axis. There-
fore, we can shrink the window of search to

kP<kY<kl. (27)

In this manner, we can integrate on the real k. axis
without the fear of encountering a pole. Finally, it is
sufficient to search for kP for the fundamental mode only,
i.e., the TMO mode, since the kP for the fundamental mode
is always larger than that of the higher order modes. Thus,
kP is the largest root of (26a) with kx set to zero.

Explicit forms of the basis functions will be given in the
next subsection. The results obtained using these basis
functions are compared to those of Jansen [3] and
Kobayashi and Ando [4] and are found to be either in
excellent agreement or even more precise in some cases.

We have also used subdomain basis functions such as
the triangle or chapeau functions. These functions form a
piecewise-linear approximation of the currents on the strip.
In this case, we discovered the occurrence of spurious
modes as had been previously reported [3]. It was found
that the basis functions had to hwe continuous derivatives
before these spurious modes disappear. This may be due to
the fact that the use of basis functions with discontinuous
derivatives gives rise to fictitious charges. These fictitious
charges may be responsible for the occurrence of these
spurious modes.

Our formulation is novel to the microstrip problem. This
method is more general and car encompass a larger class
of problems in the microwave integrated circuits area. The
formulation is in terms of Green’s functions and reflection
operators which have physical meanings closer to those for
the field theory rather than circuit theory. With the ap-
propriate choice of testing functions, the final matrix ~ is
symmetric. Furthermore, since the basis functions are either
odd or even symmetric and the Green’s function is even
symmetric with respect to kX, half of the elements of the
matrix ~ are set equal to zero a priori. These two symme-
try properties result in the ccimputation of only 25 percent
of the matrix elements as the matrix size goes to infinity.

B. Microstrip Transmission Line witha Finite Ground Plane

In the finite ground plane case, ~1, ~1~,and ~~ are given
by

‘1‘1= [rlmn 2Mx2M (28)

where

1’13 = [F13H 2M X 2N (30)

where

. eik2=hT12.G1~,. (31)

and

‘1~3= [r3wm 2NX2N (32)
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Fig. 3. Effective dielectric constant of the fundamental odd mode when Fig. 4. Effective dielectric constant of the fundamental odd mode when
c, = 2.0 and h =1.6wI. c, = 2.0 and h =12.8wI.

where As long as (35) is satisfied, the poles of integrands are not

r3mn =
J m ~~.~f~”(f+~,,)”~l”~.n

on the real kx axis and convergence of integrals is ensured
(33) when we integrate on the real k, axis...—w

assuming that M basis function matrices are used to
expand the surface current density on the upper strip and
N basis function matrices are used for the lower strip.

Due to the formulation of the problem, those values of
kY that satisfy the guidance condition of (19) are the
wavenumbers of the guided modes in the y direction.

The window of search for the ky values is again de-
termined in such a way that convergence of the numerical
integrations of (29), (31), and (33) is ensured. We se&that
the integrands become infinite when

j– ~i%,h~;l = 0 (34)

which is precisely the guidance condition in the dielectric
slab. Slab modes are guided in all directions on the xy
plane. Therefore, they carry power away from the strips
and cause the microstrip modes to be cut off. In order to
avoid this situation, the range of kY that causes the slab
modes to be evanescent in all directions except the y
direction should be found. Following the discussion of the
infinite ground plane case, (34) is solved for both the TM
and TE components to obtain a number of k~M’s and
k~ ‘s, the wavenumbers transverse to z of the guided TM
and TE modes in the’ dielectric slab. If we call the largest
of these k~M’s and k?’ s to be kP, then the window of
search is shrunk to

kp<kY<kl=ufi. (35)

The set of basis functions we use is the Chebyshev
polynomials modified according to the edge conditions as
used by Poh et al. [27]. Since the lower strip is allowed to
shift by an amount s as shown in Fig. l(a), basis functions
for the lower strip are chosen as the shifted version of the
modified Chebyshev polynomials. Therefore, J3Y.(x ) is
given by

()2(x–s)
T.

W2

– 1/2

( ))

2(X–S) 2
l–

w,

iflx–.sl<~

0 iflx–sl>~

(36)

~here W2is the width ~f the bottom strip. Consequently,
J3yn(kx), ~3xn(x), and J3X~(kX)are found to be

(38)
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Fig. 5. Effective dielectric constant of the fundamental odd mode when
c, = 5.0 and h =1.6wI.

The basis functions of the upper strip in both the space
domain and the spectral domain are also given by (36) to
(39) provided that Wz is replaced by WI and s is set to
zero. For the case of symmetric strips as shown in Fig.
l(b), s is also set to zero for the basis functions of the
lower strip.

As a final note, the Green’s function for an electromag-
netic field is highly singular. This translates to the case
where the Green’s function decays slowly for high spectral
frequencies in the spectral domain. In order to expedite the
convergence of the spectral-domain integrals, we can sub-
tract out the slowly convergent part of the integral that is
associated with the singuhuit y of the Green’s function.
Since this part is independent of kY, it needs to be done
only once, and used later when we are changing the values
of kY to look for the roots of the determinant in (5).

Some of the results obtained using the formulation and
basis functions of this section are presented in the next
section.

IV. RESULTS AND CONCLUSIONS

A rnicrostrip transmission line with a finite ground
plane has both even and odd modes, contrary to the
infinite ground plane case where only the odd modes exist.
We define an odd mode to be when the current on the top
conductor has opposite polarity to the current on the
bottom conductor. An even mode is when the current on
the top conductor has the same polarity as the current on
the bottom conductor. An infinite ground plane problem is
equivalent to a finite ground plane problem in which the

3.65 —

3.55

3.45

3.35

3.25

0 J=l G!iz

6 J=3GH,

* f=5GHz

b J=1OGH,
A

* f = %.)GI{z

/

L--

3.15
—~11111 I 1 1 ( 11411 1 ! 1 Im

10-2 10-,
1 10 102 1

w2/wl

Fig. 6. Effective dielectric constsnt of the fundamental odd mode when
c, = 5.0 and h =12.8wI.

upper and lower strips have ecpal widths [28]. We can
show that the equivalent finite ground plane geometry has
more guided modes than the corresponding infinite ground
plane geometry. We can also prove that the extraneous
finite ground plane modes are even modes by postulating
another equivalent problem as shown in [28]. When the
width of the finite ground plane is equal to the width of
the upper strip, there are two corresponding equivalent
problems: one, a perfect electric conductor inserted mid-
way between the top and the bottom strips, the other, a
perfect magnetic conductor inserted midway between the
top and the bottom strips.

The odd mode of the finite ground plane problem has a
higher effective dielectric constant than’ that of the even
mode, because more field is trapped within the dielectric
slab for the odd mode. The effective dielectric constant in
this context is defined to be

! ,- ,2

(40)

where kY is the propagation constant of the mode and k is
the free-space wavenumber. We consider the odd mode as
the fundamental mode, and most of the results we present
in this section are calculated for the odd mode.

In Figs. 3 to 11, we show plots of Cefffor the odd and
even modes of the finite ground plane problem when
s = O.In all of these plots, the width of the upper strip (wl)
is set equal to 0.1 mm and the data points are obtained by
changing the relative dielectric constant (c,) of the sub-
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strate, the thickness (h) of the dielectric substrate, the
ratio of the widths of the strips (Wz/ Wl), and the frequency

(~) as parameters. Data points are shown by markers and
they are interpolated using a spline technique.

In Figs. 3 to 8, we plot Ceff versus w2/wl of the
fundamental odd mode for the relative dielectric constants
of 2.0, 5.0, and 9.9, and for substrate thickness of h = 1.6wI
and h =12.8 W1.We see that the frequency dispersion be-
comes appreciable when the thickness of the dielectric
substrate increases. Although not shown here, the disper-
sion effect is negligible for h = 0.2 W1.The plots are given
as a function of wz/ WI so that the asymptotic behavior as
Wz~ co can be seen. The dashed lines represent the effec-
tive dielectric constant of the corresponding infinite ground
plane problem (Wz~ CO).As the ratio wz/ WIincreases, Ceff
approaches that of the infinite ground plane case. How-
ever, contrary to our expectation, c~f~ peaks before con-
verging to its value corresponding to that for the infinite
ground plane case. This peak can be as high as 0.06~,
above the asymptotic value of Ceffas Wz/ WI~ co, which
may not be ignored in some situations. In Figs. 3 to 8, we
show what value of the ratio Wz/ WI one should have in
order to reach the performance of the infinite ground
plane case. Roughly, this ratio is around 50 when h = 1.6WI
and can reach 300 when h =12.8 W1.However, this ratio is
below 10 when h = 0.2w1 (not shown here).

In Fig. 9, we show the effective dielectric constants of
even modes for t,= 9.9, h = 12.8wI, and f =1,3,5,10,20
GHz as a function of w2/wl. Figs. 10 and 11 are the plots
of odd and even modes, respectively, for c,= 9.9, Wz/ WI=
2, and h/wl = 1.6,3 .2,6.4,12.8 as a function of frequency.

1505

In Figs. 8 to 11, we depict the fact that effective dielectric
constants of the even modes are much lower than those of
the corresponding odd modes. Again this occurs because
more field is trapped within the (dielectric slab for the odd
mode.

This concludes the discussion of guidance problem in
the microstrip transmission line with a finite ground plane.
Many other problems with geometries involving strips and
stratified media can be solved following the methodology
presented in this paper.
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